Это – реалии сегодняшнего дня. Поэтому фокус внимания FMCG-компаний смещается в сторону персонифицированных цифровых коммуникаций с потребителями, а основная конкурентная борьба – в сферу управления удовлетворенностью клиентов. В FMCG начался этап новых, математических подходов к моделированию и прогнозированию потребления на основе анализа данных, а также организации более «тонких» и продуманных взаимоотношений с клиентом.
В условиях постоянно меняющихся трендов на рынке для производителей массовых товаров важно непрерывно вести мониторинг спроса. Это позволит вовремя сократить производство и запасы непопулярных товаров, переключить внимание на востребованные на рынке продукты, найти незанятые и перспективные ниши. Отчетная аналитика пост-фактум, которая главным образом использовалась до сих пор, уже не дает возможности оперативного управления в режиме реального времени. Стандартная отчетность не всегда позволяет формировать адекватные прогнозы и сценарии предстоящих событий, планировать управленческие решения – данные слишком быстро устаревают, поэтому их анализ должен происходить уже «на лету».
Многофакторный анализ помогает производителю широкого спектра товаров оптимизировать продуктовую линейку. К примеру, для того, чтобы скорректировать продуктовую матрицу, необходимо правильно определить «кандидатов на вылет» - не только на основании отчетов о продажах, но и учесть целый ряд показателей: динамику продаж в зависимости от сезона, маржинальность отдельных продуктов, объем издержек, связанных с поставками, логистикой и хранением и т.д. Помимо этого, необходимо учесть и локальные географические особенности – товар может совершенно по-разному продаваться в различных регионах страны. Здесь потребуется анализ разнородности спроса по отдельным товарам и товарным группам, учет покупательской способности населения региона, демографических характеристик и т.д.
Но и это еще не все. Важно проанализировать, к примеру, не упадут ли продажи сопутствующих товаров, спрос на которые зависит от продаж товара-«неудачника».
Фактически FMCG-компаниям приходится ежедневно решать серьезные аналитические задачи, требующие оперативного и всестороннего анализа всего массива имеющихся данных.
Еще одна «головная боль» многих топ-менеджеров в FMCG-отрасли – мониторинг динамики продаж и KPI продавцов-консультантов, которые зачастую не находятся под прямым контролем FMCG-производителя. Продажей товаров чаще всего занимаются конкретные ритейлеры, торговые сети. А производителю требуется понимать, как именно продаются те или иные группы товаров – по различным регионам, в зависимости от географических, климатических, культурных, национальных и иных особенностей. Сбор и последующий анализ данных дает FMCG-производителю массу полезной информации для оценки и планирования работы по конкретным брендам, магазинам, регионам. Например, в России подобный проект по мониторингу KPI бьюти-консультантов был реализован для Clarins Groupe – одного из крупнейших мировых производителей косметики и парфюмерии. В результате перехода на промышленную BI-платформу корпорация получила инструмент управления бизнесом и измерения эффективности работы сотрудников. Система анализирует размер среднего чека в магазине, количество наименований в чеке и ежедневное количество транзакций. Теперь изменения в покупательской способности людей, модных трендах на рынке, проходимости конкретного магазина или способностях отдельного продавца-консультанта перед топ-менеджерами Clarins Groupe как на ладони.
Сегодня появилось новое поколение ИТ-продуктов в области аналитики, требующее минимальных затрат на внедрение технологической платформы, обучение сотрудников и последующее сопровождение.
Современные решения отличаются простотой интерфейса, гибкостью настроек, продуманной эргономикой и качественной визуализацией отчетов. Системы уже «заточены» под обработку больших массивов данных – очевидно, что их объемы будут только расти с каждым годом. И что, пожалуй, самое важное – такие инструменты теперь доступны широкому кругу пользователей, то есть рядовому сотруднику компании не обязательно прибегать к помощи ИТ-отдела или обученных аналитиков, чтобы настроить отчетность, построить график или сформировать в системе прогнозную модель на основе различных вводных. С аналитикой может работать каждый – от топ-менеджера, для построения прогноза для всего предприятия в целом, до маркетолога или руководителя направления, для анализа текущей ситуации по отдельно взятому продукту. Интерфейс понятен интуитивно, не нужны сложные «визарды», настройки и слои мета-данных. Кроме того, в системе можно работать в любое время и из любого места: анализ данных доступен даже с мобильных девайсов, а благодаря качественной визуализации данных информацию можно воспринимать «на лету».
Благодаря доступности аналитики для всех заинтересованных сотрудников временной промежуток между моментом выявления проблемы и постановкой задач, направленных на ее решение, стремительно сокращается.
Современные аналитические системы развертываются проще и быстрее их более ранних аналогов. К примеру, по данным Tableau Software, лидера магического квадранта Gartner по BI, ранее при внедрении сложных аналитических систем, до 25% стоимости и длительности проекта уходило только на формирование многомерного OLAP-куба, а еще 15% занимала настройка визуализации. Сегодня решение, со всеми необходимыми для работы модулями и настройками, разворачивается в облаке за несколько минут, не требуя специальной ИТ-инфраструктуры.
Вместе с тем, использование удобного ИТ-решения еще не означает успех аналитического проекта. Компании важно правильно сформулировать бизнес-цели, понять, какое новое знание (о продуктах, потребителях или рынке) она хочет получить, определить, где именно концентрируются данные, которые можно проанализировать, и быть готовой оперативно меняться, перестраивать бизнес-процессы на основе получаемых аналитических выводов и прогнозов. Безусловно, внедрение аналитических методов в работу компании невозможны и без грамотного бизнес-аналитика или data scientist внутри организации.
Безусловно, ближайшее будущее для любого бизнеса – это работа на основе анализа получаемой информации. Поэтому будущее – за теми компаниями, которые раньше и лучше других научатся использовать имеющиеся у них данные и аналитические инструменты, будь то прогнозирование спроса на конкретные товары или повышение лояльности и удовлетворенности клиентов.
Статья опубликована на www.retail-loyalty.org